1/1页1 跳转到查看:336
发新话题 回复该主题
键盘左右键可以进行前后翻页操作
帮助

人工智能在仓储情景中的应用

人工智能在仓储情景中的应用

人工智能近年来的迅猛发展,预示着其将为仓库运作方式带来革命性的变革。但在企业决定在运营实践中引入并实施这一新技术之前,必须要确保已拥有相关数据及所需人才。
对相关企业而言,即时关注并对供应链技术的进步具有敏感性几乎已经成为必须。机器人技术、自动化、数据分析和工业物联网等各种新技术,正在逐步展示出其在提升货物运输,处理,存储和配送效率方面的潜力。这些新技术的不断涌现,使得我们很难确认究竟应把注意力集中在哪一方面。
在这其中一项值得仔细研究的新技术是人工智能(AI)。简单而言, 人工智能是计算机系统发展到一定阶段的产物,即代为执行通常需要人类智能参与的任务(如视觉感知、语音识别、决策和语言翻译)。人工智能出现于1956年,但绝大多数情况下,我们都必须将智能程序明确地输入到计算机中。
近年来,机器学习作为一种典型的人工智能技术。机器学习主要是探索如何可以使计算机程序通过对输入数据的学习来提高其输出性能。这些程序可以嵌入在机器中,也可以在服务器或云端操作。亚马逊(Amazon)、谷歌、Facebook、微软(Microsoft)等大型科技公司已经将机器学习融入到他们的产品和服务中,为用户提供:相关度更高的网络搜索内容,更好的图像与语音识别技术以及更智能化的设备。
机器学习与数据分析(收集、转换及数据分析的流程)之间有一些相似之处。两者都需要一个经过清理的、多样化的、大型的数据库才能有效地运作。然而,主要的区别在于,数据分析允许用户从数据中得出结论,进而要求用户采取相应措施来改善其供应链。相比较而言,对于已处于可解决范畴内的问题,机器学习可以基于“训练数据库”自动执行操作(本文后续关于监督学习的部分将对此进行讨论)。基于其允许任务自动执行这一特性,人工智能 — 尤其是机器学习 — 对许多供应链管理人员来说都是一项值得关注的重要技术。对于今天的许多企业来讲,制定并实施供应链相关的人工智能战略,将使其随着技术的逐渐成熟,提升自身的生产力、速度与效率。
一、人工智能的发展现状
人工智能近期的迅猛发展,得益于以下因素的共同作用。第一,各种设备的互通互连而产生的数据量的增长以及促使日常生活数字化的高级传感器的使用的增长。第二,从移动设备到云计算,各种设备的计算能力也在持续增长。因此,机器学习可以运行在最新的硬件运算设备上,同时获取大批量、多样化及高质量的数据库,进而自动执行各种任务。
案例一:
下面是一个众多消费者将逐渐熟悉的场景。如果你有一个iphone而且每天早晨通勤上下班, 最近一段时间你可能留意到了以下情况:当你坐进汽车的时候,你的手机将自动提示你开车去公司将需要多少时间,根据实时的路况信息给出最佳行车路线的建议。当这一现象第一次发生时,你可能会有这样的疑惑:“手机怎么会知道我要去上班?感觉很酷,但也有一点点恐怖”。
因为内置了机器学习功能,手机可以根据你过去做过的事情来预测你将要什么。如果你换了新工作或者开车去了另外一个目的地,设备会自动调整它的预测,并根据新的目的地发出新的通知。这一应用场景的特别强大之处在于:设备对用户来说越来越有帮助,而用户或软件开发人员不必采取任何行动。
另一个场景是自动驾驶汽车。目前路面上行驶的自动驾驶汽车正在被用来收集数据,用来改进下一代自动驾驶汽车的技术。当人工操作人员直接对车辆进行控制时,相关的数据就会与其他车辆的数据汇集起来并进行对比分析,以确定在何种情况下自动驾驶汽车将切换到由人工驾驶模式。这样的数据收集与分析将使得自动驾驶汽车变得更加智能。
虽然人们很容易被今天人工智能相关的令人兴奋的发展所鼓舞,但了解人工智能的局限性也很重要。在《哈佛商业评论》(Harvard Business Review) 2016年的一篇文章中,《人工智能现阶段的能与不能》,斯坦福人工智能实验室前负责人、跨国科技公司百度的人工智能团队前首席科学家Andrew Ng明确表示,“人工智能将变革许多行业,但它并不具有无所不能的魔力。”
Ng强调,虽然人工智能已经有很多成功的实施案例,但大多数都是在监督学习的场景下展开应用。在这一模式下,每一个训练输入数据库与正确的输出决策相关联。机器学习算法通过比对这个训练库的信息来根据新的输入数据做出决策。监督学习的一些常见应用包括照片标记、贷款处理与语音识别。在每一个应用案例中,系统都会接收输入信息 — 比如照片标签应用中的图片 — 并基于它从训练数据库中学到的信息做出决定或做出反应。
如果拥有一个足够大的输入数据库,并用对应的人工响应 (或输出) 做以注释 ,那么就可以构建一个人工智能应用程序,允许计算机系统接收新的输入数据并自行做出决定。这可以使过去不容易自动化的流程变的可以自动运作,最终提升仓库啊的运营效率。而实现这一目的的关键就是辅助做出决策的数据库的大小、质量与多样性的程度。训练输入数据库越大、越多样化,机器学习算法做出的决策就越优化。

TOP

 
1/1页1 跳转到
发表新主题 回复该主题